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ABSTRACT

Combinatorial optimization (CO) problems are classical and crucial in many
fields, with many NP-complete (NPC) examples being reducible to one another,
revealing an underlying connection between them. Existing methods, however,
primarily focus on task-specific models trained on individual datasets, limiting
the quality of learned representations and the transferability to other CO problems.
Given the reducibility among these problems, a natural idea is to abstract a higher-
level representation that captures the essence shared across different problems, en-
abling knowledge transfer and mutual enhancement. In this paper, we propose a
novel paradigm CORAL that treats each CO problem type as a distinct modality
and unifies them by transforming all instances into representations of the funda-
mental Boolean satisfiability (SAT) problem. Our approach aims to capture the un-
derlying commonalities across multiple problem types via cross-modal contrastive
learning with supervision, thereby enhancing representation learning. Extensive
experiments on seven graph decision problems (GDPs) demonstrate the effective-
ness of CORAL, showing that our approach significantly improves the quality
and generalizability of the learned representations. Furthermore, we showcase the
utility of the pre-trained unified SAT representations on related tasks, including
satisfying assignment prediction and unsat core variable prediction, highlighting
the potential of CORAL as a unified pre-training paradigm for CO problems.

1 INTRODUCTION

Combinatorial optimization (CO) is a pivotal area of study in both theoretical computer science
and a wide range of applied fields, owing to its broad applicability in solving complex real-world
problems, including logistics (Sbihi & Eglese, 2010), network design (Vesselinova et al., 2020),
scheduling (Hwang & Cheng| [2001), and finance (PekeC & Rothkopf] |2003). CO problems are
inherently challenging due to their discrete and non-convex nature, which often leads to NP-hard
complexity (Karpl 2010), with many instances requiring worst-case exponential time to solve. In
response to these challenges, machine learning (ML) approaches have recently emerged in the CO
domain (Bengio et al., 2021} |Gasse et al., 2022)), offering the potential to reduce solving times by
exploiting common patterns and structures in CO instances.

Most existing ML-based approaches for CO primarily emphasize improving problem-specific rep-
resentation learning to enhance task performance. While these methods can achieve high accuracy
on particular tasks, the representations they learn are typically tailored to specific instances, making
them non-transferable across different datasets or problem domains. Consequently, individual mod-
els must be trained for each dataset and task, limiting the potential for broader generalization and
scalability. This fragmentation hinders the development of more generalizable CO models that can
efficiently solve a wide range of problem types using a unified framework, as in the vision or lan-
guage field (Khan et al., 2022} [Min et al.,|2023). Moreover, the inherent connections among many
CO problems offer a compelling opportunity for unification. Since numerous NPC problems can be
reduced to one another, they share a common underlying structure that can potentially be exploited
for more efficient representations. The connections suggest that instead of learning problem-specific
representations, a higher-level, abstract representation could be developed to capture the essence
shared across different CO problems. Such a unified representation would not only enable knowl-
edge transfer between problem domains but also facilitate mutual enhancement, as insights gained
from one problem could benefit the solution of others.
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In this paper, we aim to develop the general and high-level representations across CO problems to fa-
cilitate various tasks, with a particular focus on graph decision problems (GDPs), which encapsulate
the core challenges of CO. Notably, from the 21 NP-complete problems identified by |[Karp (2010),
10 are GDPs, highlighting their fundamental importance. To achieve our objective, it is significant to
effectively incorporate and synthesize features from multiple problem types. Therefore, we leverage
contrastive learning, a technique widely employed for modality alignment in vision-language pre-
trained models (Du et al.||2022). However, applying contrastive learning to CO problems presents a
significant challenge due to the inherent differences between CO problems, rendering direct appli-
cation impractical. In response, we propose a sophisticated and unified training paradigm, CORAL,
that enables effective contrastive learning across graph CO problems. Specifically, to align with the
multi-modal training perspective, we conceptualize each GDP type as a distinct problem modality.
To bridge the gaps among GDP types, we introduce the Boolean satisfiability (SAT) problem as a
unified intermediary modality. The SAT modality is used to construct strong correspondence with
other GDP types through instance transformation, thereby establishing connections among GDPs.
In the training phase, instances from each GDP type are concurrently contrasted with the corre-
sponding SAT instances, thereby fusing features across problem modalities. The contrastive-based
training enables each model to learn high-level representations from multiple problem types, serving
as a pre-training phase. The trained models are finally fine-tuned on specific datasets and tasks.

Extensive experiments are conducted to evaluate the effectiveness of the CORAL paradigm. First,
we assess the performance of the models on standard tasks adopted during the pre-training phase,
including GDP solving and satisfiability prediction, to demonstrate the superiority of the represen-
tations learned through CORAL. Subsequently, we evaluate the generalizability of the models by
testing them on larger-scale instances, where experimental results indicate that the models trained
using the CORAL paradigm exhibit significantly enhanced generalization capabilities. Addition-
ally, to further highlight the practical applications of CORAL, we examine the performance of the
pre-trained SAT models on related SAT-based tasks across both seen and unseen datasets during the
pre-training phase. The main contributions of the paper are as follows.

1) We propose CORAL, a novel training paradigm designed to learn high-level representations
across multiple CO problems. To the best of our knowledge, it is the first framework to leverage
unified representations across different problem types.

2) We introduce SAT as an intermediate, unified modality to bridge diverse GDPs, enabling the
effective learning of shared characteristics and information transfer across different problem types.

3) We conduct extensive experiments on various problems and examine the efficacy of the pre-
trained representations on new tasks and datasets, illustrating the potential of CORAL as a robust
and unified pre-training paradigm.

2 RELATED WORK

Graph Learning for CO. The application of machine learning to graph-based CO problems has
a rich history, with recent research demonstrating substantial advancements in this domain (Khalil
et al., 2017; Bengio et al., [2021; Mazyavkina et al., 2021). Most ML-based approaches for CO
follow a two-stage framework: (1) Graph representation learning, where graph instances are em-
bedded into low-dimensional vector spaces (Hamilton et al., 2017b; |Cai et al.| [2018; |Chen et al.|
202042); and (2) The utilization of these learned representations to solve CO problems (Joshi et al.,
2019; |Prates et al.| [2019; |Sato et al., 2019). Our CORAL paradigm focuses on enhancing the first
stage by proposing a more general training approach. While previous work has largely focused on
designing network architectures (Kipf & Welling) 2016; [Hamilton et al.l 2017a; |[Velickovic et al.}
2017), our approach emphasizes the development of a training paradigm that leverages information
from multiple problem types. By incorporating a contrastive learning-based strategy, CORAL aims
to learn high-level, transferable representations that can be effectively applied across various CO
problems, promoting a more unified and generalizable framework for graph-based CO tasks.

Graph Contrastive Learning. Current graph contrastive learning frameworks primarily rely on
graph augmentations, which can be broadly categorized into two types: (1) structural perturba-
tions, such as node dropping, edge sampling, and graph diffusion (Duan et al [2022; Huang et al.,
2023); and (2) feature perturbations, such as adding noise to node features (Hassani & Khasahmadi,
2020). These augmentation strategies have demonstrated effectiveness across a range of tasks, from
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graph-level representations (Hassani & Khasahmadi, [2020; You et al.} 2020)) to node-level represen-
tations (Wan et al., [2021}; [Tong et al.,2021). Our CORAL paradigm moves beyond traditional graph
augmentations by contrasting graph instances across multiple problem types. Instead of solely rely-
ing on structural and feature perturbations, CORAL leverages the inherent characteristics of different
CO problems, enabling the model to capture higher-level characteristics.

Solving SAT with ML Approaches. ML-based SAT solvers can be broadly classified into two
categories (Holden et al.|, 2021} |Guo et al., 2023} |Li et al., [2023)): standalone neural solvers and
neural-guided solvers. Standalone neural solvers directly address SAT instances (Biinz & Lamm)
2017;Selsam et al., [2019; |Cameron et al., 2020; Shi et al.,[2023)). In contrast, neural-guided solvers
focus on enhancing the search heuristics of classical SAT solvers (Zhang et al.;,2020; Li & Si,[2022).
Our CORAL paradigm leverages information from original graph problems to learn more robust and
generalizable representations, thereby also improving SAT solving performance.

3 METHODOLOGY

In this section, we present details of our contrastive Combinatorial Optimization Representation
Alignment and Learning (CORAL) paradigm. We start by introducing the preliminary background
on representations of graph decision problems and SAT in Sec.[3.I] Then, we elaborate on our
approach to aligning multiple problem types in Sec.[3.2] Finally, we introduce the overall pipeline
and model implementation of our CORAL, as well as some important training details in Sec.[3.3

3.1 PRELIMINARY
3.1.1 GRAPH DECISION PROBLEM

The graph decision problem (GDP) is a fundamental computational challenge in graph theory and
combinatorial optimization, where the goal is to determine the existence of specific properties within
a given graph. These properties can vary widely, from identifying whether a graph contains a partic-
ular substructure, such as a clique or cycle, to assessing whether it meets conditions like connectivity
or planarity. Graph decision problems are typically formulated as yes/no questions, making them
essential in complexity theory, especially in the context of NP-complete problems.

ML-based models can be effectively utilized to address GDPs. In such models, the objective is to
learn a representation of a specific GDP type and use it to predict decisions based on the input graph.
These representations can be understood as mappings that translate the structural properties of the
input graphs into corresponding decisions, thereby capturing the underlying patterns required for
decision-making in GDPs.

3.1.2 SAT PROBLEM

A Boolean formula in propositional logic consists of Boolean variables connected by logical oper-
ators “and” (A), “or” (V), and “not” (—). A literal, denoted as [;, is defined as either a variable or
its negation, and a clause c; is represented as a disjunction of n literals, \/Z':1 l;. A Boolean for-
mula is in Conjunctive Normal Form (CNF) if it is expressed as a conjunction of clauses /\;n:1 cj.
Given a CNF formula, the Boolean Satisfiability Problem (SAT) aims to determine whether there
exists an assignment 7 of Boolean values to its variables under which the formula evaluates to true.
If such an assignment 7 exists, the formula is called satisfiable, where 7 is called a satisfying as-
signment; otherwise, it is unsatisfiable. Identifying a satisfying assignment for a Boolean formula
proves its satisfiability, and serves as a crucial step in solving practical instances in various applied
domains. On the other hand, for an unsatisfiable formula, a minimal subset of clauses whose con-
junction remains unsatisfiable is referred to as the unsat core. This subset captures the essential
structure responsible for the unsatisfiability. The variables involved in this unsat core are termed
unsat core variables. Identifying the unsat core variables is important for understanding the funda-
mental sources of unsatisfiability, and plays a critical role in optimization processes.

Graph representations play an important role in analyzing SAT formula, with four primary
forms (Biere et al.l [2009) commonly used: the literal-clause graph (LCG), literal-incidence graph
(LIG), variable-clause graph (VCG), and variable-incidence graph (VIG). The LCG is a bipartite
graph consisting of two types of nodes—literals and clauses—where an edge between a literal and
a clause signifies the occurrence of that literal in the clause. The LIG, in contrast, consists solely of
literal nodes, with edges representing the co-occurrence of two literals within the same clause. The
VCG and VIG are derived from the LCG and LIG by merging each literal with its negation.
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3.2 MODAL ALIGNMENT

We aim to enhance the learned representations of graph instances across a diverse range of GDPs
by incorporating and synthesizing information from multiple GDP types. Specifically, we concep-
tualize each GDP type as a distinct problem modality. By adopting this multi-modal perspective, we
explore the potential for cross-modal information-passing schemes. Note that the term ‘modality’ is
not strictly defined. We hope to express that the problems represent different forms of a higher-level
underlying difficulty and share a common underlying structure.
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To address the challenges, we propose in-
troducing SAT as a unified intermediary
modality. The core concept involves trans- Figure 1: Transformation process from various GDP
forming each GDP instance into its cor- instances to the unified LCG representation of SAT.
responding CNF formula, effectively con-

verting it into a SAT instance. Once transformed, we construct a SAT-based graph representation for
each instance, ensuring that all GDP instances, regardless of their original modalities, are standard-
ized into an equivalent SAT graph representation. This transformation allows for uniform modeling
across disparate problem types. Fig. |l|clarifies our approach to modal transformation.

After this transformation, we leverage contrastive learning to align the different modalities. Specif-
ically, each GDP instance and its corresponding SAT instance form a positive pair, while SAT in-
stances derived from other GDP instances within the same GDP type serve as negative samples. The
SAT modality, in turn, aligns with all other modalities.

This approach facilitates effective cross-modal information transfer between GDP modalities in an
indirect manner. By utilizing SAT as an intermediary modality, we preserve the distinct characteris-
tics of each problem type while promoting coherent information fusion across modalities.

3.3 CORAL PARADIGM
3.3.1 OVERVIEW
In this section, we provide a detailed introduction to CORAL. Fig. 2]exhibits an overview.

Consider a scenario involving n types of GDPs, denoted as Py, Pa, ..., P,, along with n corre-
sponding graph sets G, Go, ..., G,. For simplicity, assume that each graph set G; contains m
graphs, ie., G; = {G},G?,...,G"}, fori = 1,2,...,n. The objective is to solve problem P; on
graphs in G;. In total, there are m X n instances, denoted by I/ = (P;,G;), where i = 1,2,...,n
andj =1,2,...,m.

We first transform each of the m xn GDP instances into CNF, thereby generating their corresponding
SAT graphs, i.e., (P;,G;) — BJ, where B/ is the constructed (bipartite) SAT graph.

Then, we develop n distinct graph models, My, ..., M,,, each for one GDP type, and one unified
SAT model M,; to address the problem space. Both the graph models and the SAT model are
structured around two key components: the Representation Extractor and the Output Module.
The Representation Extractor is responsible for learning and extracting representations from the
input graph instances, whether derived from GDP or SAT transformations. The Output Module
then utilizes these learned representations to produce task-specific outputs, thereby enabling the
resolution of the given problem.

In the training phase, we simultaneously train the n + 1 models corresponding to the n GDP modal-
ities and the SAT modality. The supervision is derived from two parts: the decision loss and the
contrastive loss. The decision loss is applied independently to each model, guiding it to effectively
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Figure 2: Overview of our CORAL paradigm. Given instances from multiple GDP types and their
corresponding SAT graphs, a graph model is trained for each GDP type alongside a SAT model.
Each model is composed of a Representation Extractor and an Output Module. The input graphs
are processed by the Representation Extractor to generate instance-level representations, which are
subsequently fed into the Output Module to produce the final decisions for each instance. The
decision loss is applied individually to each model, while the contrastive loss is applied to each
graph model. All contrastive losses are applied to the SAT model.
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learn the feature representations of the respective instances and capture the unique characteristics of
its assigned modality. Meanwhile, the contrastive loss is employed to facilitate feature fusion and
message passing across the different modalities, enabling the models to leverage complementary
information from multiple modalities.

3.3.2 MODEL ARCHITECTURE

In this section, we illustrate the utilized model architecture, encompassing both the graph and the
SAT models. Please refer to Appendix [B]for more details.

Graph Model. Each graph model is designed to address a specific type of GDP, and all models
maintain a consistent architecture. To illustrate this, we focus on problem P,, and its corresponding
graph model M,,. The graph model M,, takes graphs in the set G,, as input and processes them
through the Representation Extractor. The input graph primarily consists of edge information, which
is often a critical aspect of GDPs. For the initial vertex features, we introduce a d-dimensional

embedding for all vertices, represented as hslo).
For the Representation Extractor, we adopt the vanilla Graph Convolutional Network (GCN) (Kipf]

& Welling, 2016), which is widely used as a backbone for node embeddings in graph-based tasks.
Assume there are k layers, the embedding extraction at the ¢-th layer of the network is expressed as:

H® =ReLUD ZAD *H{ VWD) i=12, ...k, 1)

where H denotes the node embedding matrix, with each row corresponding to a node embedding.
The matrix A = A + I is the adjacency matrix augmented with self-loops through the identity
matrix I. D;; = > j A;; is the degree matrix, and W is the learnable weight matrix. Following the
extraction of node features, we apply average pooling to the node embedding matrix H;’“) to aggre-

gate the node-level information into a single representation for the entire graph instance, denoted as
r,,. This aggregation is computed as follows:

r, — Z’UGV hgﬁz}
n |v| )

where V represents the set of vertices in the input graph, |V| denotes the total number of vertices, and

2

h;k% is the extracted embedding for node v. r,, serves as the instance-level feature representation,
and is subsequently fed into the Output Module, which is implemented as an MLP to produce the
final decision for the instance.
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SAT Model. Apart from the graph models, the SAT model M,; processes the constructed SAT
graphs via its own Representation Extractor. For illustration, we consider the LCG representation.

For the initial node features, we define two distinct d-dimensional embeddings: hl(o) for all literal
nodes and h&o) for all clause nodes.

The architecture of the Representation Extractor is inspired by NeuroSAT (Selsam et al.,2019)). For
notational clarity, we assume that the extractor consists of & layers, with both literal and clause node

embeddings being iteratively aggregated and updated at each layer. At the ¢-th layer, the updates for
the literal and clause node embeddings are formulated as follows:

hl(i) = LayerNormLSTM (S[j\}/l}/l[) (MLP (hi_l)) 7hl(z;l)7 h(jzl)) , 3)
ce

h{" = LayerNormLSTM <ZSIAJ/1(\/I) (MLP (hi™)) ,hfj”) , )
eN(c

where [ and c represent an arbitrary literal node and clause node, respectively, N (-) refers to the
set of neighboring nodes. The summation operator (SUM) serves as the aggregation function, while
LayerNormLSTM (Ba, |2016) is employed as the update function.

Similar to the graph models, the instance-level representation rg,; derives by averaging the literal
node embeddings after the k-th layer. The instance-level representation, along with the literal-level
embeddings, is passed to the Output Module, which is also implemented as an MLP, to generate the
final task-specific decisions or predictions.

3.3.3 Loss FUNCTION

In CORAL paradigm, model training is guided by two key loss functions: the decision loss and the
contrastive loss. These losses play a critical role in optimizing the model’s performance, with the
decision loss focusing on task-specific predictions, while the contrastive loss facilitates cross-modal
representation alignment and feature fusion.

The Decision Loss. The decision loss L. is defined as a binary cross-entropy loss, which can be
computed by:
Loee = Y {—dlog(d™) — (1 —d5')log(1 — d")}, (5)
1€ Batch
where d°" denotes the output decision of the models, and d&' refers to the ground truth label for
satisfiability. For each model, the decision loss is independently computed and applied.

The Contrastive Loss. Inspired by [Chen et al.| (2020b), we define the contrastive loss Lo, to
facilitate the alignment between the GDP and SAT modalities. Taking P,, and the SAT modality as
an example, the contrastive loss is formulated as follows:

N (5 3 VRS
Leonn = Z {— log exp(sim(F;,, Fiq)/7) _ exp(sim(tl,1%,,)/7) }

—— log ——

S L exp(sim(ih, #a)/7) 7 30 L exp(sim(ih, #a,)/7)
(6)

where N represents the number of instance pairs in a batch, #?, denotes the normalized representa-

tion of the i-th instance in the P,, modality, and %, denotes the normalized representation of the

corresponding instance in the SAT modality, derived from the i-th instance of the P,, modality. The

parameter 7 is the temperature scalar, and I is an indicator function. The function sim(-, -) measures

el

A

i=1

the cosine similarity between two representations, defined as sim(r;,r;)

Each GDP modality is trained using the contrastive loss with the SAT modality, allowing indepen-
dent optimization for each GDP model. In parallel, the SAT model is optimized using the average
contrastive losses computed across all GDP modalities, ensuring effective alignment.

3.3.4 TRAINING DETAILS

We adopt a warm start strategy to ensure the models learn robust representations. During the initial
training phase, only the decision loss is utilized, while the contrastive loss is temporarily disabled.
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This phase allows the models to focus on learning meaningful task-specific representations based
solely on the decision outcomes. Our insight is to provide a stable foundation for representation
learning before introducing the more complex cross-modal alignment enforced by contrastive loss.

After the warm start phase, we introduce the contrastive loss alongside the decision loss. To balance
the influence of these two losses, we introduce a parameter 5, which controls the relative weight of
the decision loss during the joint training phase.

It is important to note that CORAL serves solely as a pre-training framework. While it enables the
learning of robust and transferable representations, fine-tuning is required for optimal performance.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. To evaluate the broad applicability of our approach, we select seven GDPs: k-Clique, k-
Dominating Set (k-Domset), k-Vertex Cover (k-Vercov), k-Coloring (k-Color), k-Independent Set
(k-Indset), Perfect Matching (Matching), and Graph Automorphism (Automorph). For each prob-
lem, we randomly generate graph instances that adhere to a distribution specific to the problem. To
ensure a comprehensive and rigorous evaluation, we create datasets with varying levels of difficulty,
categorized as easy, medium, and hard, based on the size and distribution of the generated graphs.
For each easy and medium dataset, we generate 160,000 instances for training, 20,000 instances
for validation, and 20,000 instances for testing. For each hard dataset, we only produce 20,000
instances for testing to evaluate the generalizability of models. Additionally, we ensure an equal
distribution of labels, with 50% of instances labeled as satisfiable (1) and 50% as unsatisfiable (0)
across the training, validation, and test sets. The graph instances were transformed into CNF using
generators from CNFGen (Lauria et al.,2017)). Moreover, we synthetically generate instances of two
pseudo-industrial SAT problems, employing the Community Attachment (CA) model (Giraldez-Cru
& Levyl 2015) and the Popularity-Similarity (PS) model (Giraldez-Cru & Levy,[2017), and two ran-
dom SAT problems, utilizing the SR generator in NeuroSAT (Selsam et al., 2019) and the 3-SAT
generator in CNFGen (Lauria et al.,[2017), to demonstrate the effectiveness of the learned represen-
tations on unseen datasets, thereby proving that the representations are high-level. Please refer to
Appendix [A]for more details about the datasets.

Tasks. We evaluate the performance of our graph models on the GDP solving task, focusing on
their ability to accurately determine the solution for each specific problem type. For the SAT model,
we assess its effectiveness on the satisfiability prediction task. Moreover, we further evaluate the
SAT model on two essential tasks critical to SAT solving: satisfying assignment prediction and
unsat core variable prediction. Satisfying assignment prediction requires the model to determine
a specific variable assignment that satisfies the given SAT instance, while unsat core variable predic-
tion involves identifying the minimal subset of variables that contribute to the unsatisfiability of the
instance. These tasks are crucial for evaluating the generalizability of the learned representations.

Baselines. For a fair comparison, we establish baselines for both the graph and SAT models. The
baseline for our graph models consists of models with the same architecture as our proposed ap-
proach but trained in a conventional manner, without leveraging the contrastive learning framework.
Each graph model is trained independently on its respective dataset using standard supervised learn-
ing. Similarly, the baseline for our SAT model adopts the same architecture as in our proposed
method but is trained simultaneously on seven GDP datasets in a traditional manner, without cross-
modal contrastive alignment.

4.2 GRAPH MODEL PERFORMANCE
4.2.1 GDP SOLVING

We evaluate the accuracy of the graph models in solving seven GDPs. The baseline model, denoted
as Graph Model, follows the architecture outlined in Sec.[3.3.2]and is trained independently on each
of the seven GDP datasets using conventional supervised learning. Our proposed approach, denoted
as Graph Model+Contrast, employs the same architecture as the baseline model but initializes
model parameters with a pre-trained checkpoint from CORAL, trained on the seven GDP datasets,
and is then fine-tuned individually on the seven GDP datasets.
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Table 1: GDP solving accuracy of the graph models trained on identical distribution. The ‘Overall’
column represents the average accuracy across all datasets.

Difficulty Model k-Clique k-Domset k-Vercov k-Color k-Indset Matching Automorph | Overall
Graph Model 0.770 0.585 0.603 0.861 0.627 0.712 0.636 0.685
Easy Graph Model+Contrast ~ 0.793 0.620 0.673 0.902 0.675 0.717 0.654 0.719
. Graph Model 0.632 0.622 0.599 0.796 0.611 0.706 0.633 0.657
Medium  Graph Model+Contrast ~ 0.713 0.646 0.633 0.822 0.640 0.728 0.657 0.691

Table |I| presents the results, showing the performance of both models trained and evaluated on
datasets with identical distributions, including the easy and medium datasets. Our approach con-
sistently outperforms the baseline model across multiple GDP tasks, indicating that leveraging the
pre-trained representations from CORAL significantly enhances the models’ ability to solve vari-
ous GDPs. Furthermore, it supports our motivation that the high-level representations learned by
CORAL enable mutual enhancement, where insights and patterns learned from one problem type
can be transferred to and improve the solution of others.

4.2.2 GENERALIZATION ON HARD DATASETS

To assess the generalization capabilities of the graph models, we evaluate their performance on the
hard datasets, which consist of problem instances with increased scale and complexity. The model
names and training configurations are consistent with those described in Sec.[d.2.1]

Table 2: GDP solving accuracy of the graph models on the hard datasets. The terms ‘Easy’ and
‘Medium’ in parentheses indicate the difficulty level of the datasets used for training. The ‘Overall’
column represents the average accuracy across all datasets.

Model k-Clique k-Domset k-Vercov k-Color k-Indset Matching Automorph ‘ Overall
Graph Model (Easy) 0.545 0.500 0.500 0.546 0.505 0.664 0.631 0.556
Graph Model+Contrast (Easy) 0.571 0.501 0.500 0.605 0.503 0.679 0.636 0.571
Graph Model (Medium) 0.571 0.562 0.500 0.637 0.531 0.683 0.632 0.588
Graph Model+Contrast (Medium)  0.578 0.565 0.577 0.676 0.565 0.700 0.653 0.616

Table 2] presents the results of graph models trained on the easy and medium datasets, and tested on
the hard datasets. The results clearly show that models leveraging the pre-trained representations
from CORAL exhibit improved performance across most GDP tasks, indicating that CORAL not
only enhances task-specific performance but also provides robust generalization to more challenging
and previously unseen problem instances. The consistent improvements highlight the ability of
CORAL to capture and leverage the inherent connections among different CO problems to learn
representations that transcend individual problem types.

4.3 SAT MODEL PERFORMANCE

4.3.1 SATISFIABILITY PREDICTION

Satisfiability Prediction Accuracy. We assess the satisfiability prediction accuracy of the SAT
model using instances transformed from seven distinct GDPs. The baseline model, referred to as
the SAT Model, adheres to the architecture described in Sec. and is trained concurrently
on instances derived from all seven GDPs. This training strategy capitalizes on the relatively
coherent graph representations of the SAT instances. Our proposed approach, denoted as SAT
Model+Contrast, employs the same architecture as the baseline model, but the model parame-
ters are initialized with a pre-trained checkpoint from CORAL, trained on the seven GDP datasets.
The model is then fine-tuned on the instances transformed from all seven GDPs simultaneously.

Table 3: Satisfiability prediction accuracy of the SAT models. The ‘Overall’ column represents the
average accuracy across all datasets.

Difficulty Model k-Clique k-Domset k-Vercov k-Color k-Indset Matching Automorph \ Overall
SAT Model 0.959 0.991 0.998 0.974 0.954 0.995 0.999 0.981
Easy SAT Model+Contrast ~ 0.989 0.996 0.999 0.988 0.989 0.999 0.999 0.994
. SAT Model 0.876 0.987 0.991 0.817 0.887 0.997 0.988 0.935
Medium AT Model+Contrast ~ 0.923 0.991 0.996 0.946 0.930 0.999 0.999 0.969
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Table [3]shows the results, where our approach consistently outperforms the baseline model on most
datasets, with particularly notable improvements on more challenging datasets. The results demon-
strate the effectiveness of leveraging the inherent connections between different CO problems. By
drawing on the common underlying characteristics among different problem types, our approach
enhances the performance of the SAT model, showcasing the advantages of cross-domain learning.

Generalization Performance. We evaluate the generalization capabilities of the SAT models on
instances transformed from hard GDP datasets, with the results presented in Table[d] Our proposed
approach consistently outperforms the baseline model across most datasets, underscoring the robust-
ness and transferability of the representations learned through CORAL, and its ability to generalize
across complex, unseen problem instances.

Table 4: Satisfiability prediction accuracy of the SAT models on the hard datasets. The terms ‘Easy’
and ‘Medium’ in parentheses indicate the difficulty level of the datasets used for training. The
‘Overall’ column represents the average accuracy across all datasets.

Model k-Clique  k-Domset k-Vercov ~k-Color k-Indset Matching ~Automorph | Overall
SAT Model (Easy) 0.475 0.505 0.500 0.588 0.473 0.995 0.729 0.609
SAT Model+Contrast (Easy) 0.662 0.506 0.500 0.600 0.665 0.998 0.790 0.674
SAT Model (Medium) 0.692 0.964 0.852 0.679 0.694 0.996 0.990 0.838
SAT Model+Contrast (Medium)  0.827 0.972 0.936 0.745 0.836 0.997 0.991 0.901

4.3.2 OTHER SAT-BASED TASKS

We further evaluate the SAT model on the satisfying assignment prediction task and the unsat
core variable prediction task. To assess performance, we compare three different approaches by
tracking the accuracy over training iterations. For our proposed approach, referred to as SAT
Model+Contrast, we initialize the model using a pre-trained checkpoint obtained from CORAL,
trained on the seven GDP datasets, and subsequently fine-tune it on individual datasets. For compar-
ison, we include two baseline models: SAT Model, which is initialized with a pre-trained checkpoint
trained in a conventional manner on the seven GDP datasets, and Un-Pretrained SAT Model, which
is trained from scratch. The results are shown in Fig.[3]

On the datasets encountered during pre-training, both our approach and the pre-trained baseline
significantly outperform the un-pretrained baseline. However, our approach demonstrates supe-
rior performance by achieving faster convergence and attaining a higher final accuracy. On the
unseen datasets, our approach still outperforms the baseline models, whereas the pre-trained and
un-pretrained baselines exhibit comparable performance. These results highlight the effectiveness
of the CORAL paradigm, which not only improves convergence rates but also enhances the model’s
ability to generalize to previously unseen datasets, thereby demonstrating the strength of leveraging
contrastive learning across multiple problem types. Please refer to Appendix [D]for more results.

The above results collectively validate the efficacy of CORAL, demonstrating its capacity to enhance
both in-domain performance and cross-domain generalization.

4.4 EXPERIMENTS ON MORE BACKBONES

We conduct experiments on more backbones to show the consistent effectiveness of CORAL. We
consider LCG and VCG modeling for the SAT graphs. We also employ alternative backbones,
including GCN for the SAT model and GraphSAGE (Hamilton et al., [2017a) for the graph models.
Table[5]shows the results, where our approaches consistently outperform the baselines. In particular,
when employing the GraphSAGE backbone, our approach achieves a remarkable improvement over
the baseline. Please refer to Appendix [B]for more details on model backbones.

5 CONCLUSION AND OUTLOOK

In this paper, we introduce CORAL, a novel paradigm designed to promote learning representation
for CO problems via contrastive learning across different problem types. By focusing on graph de-
cision problems and leveraging the inherent connections, CORAL effectively captures the shared
structural characteristics across different problem types. We perform extensive experiments on mul-
tiple datasets and tasks. The results indicate that our approach shows not only improved task-specific
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Figure 3: Model performance w.r.t. training iterations on SAT-based tasks across various datasets.
The top four graphs display the results for the satisfying assignment prediction task (Assign), while
the bottom four graphs present the results for the unsat core variable prediction task (Core Var). The
left four graphs depict the model’s performance on unseen datasets, whereas the right four graphs
illustrate the performance on datasets encountered during the pre-training phase.

Table 5: Experimental results across various model backbones. The table presents the GDP-solving
accuracy for the graph models and the satisfiability prediction accuracy for the SAT models. ‘SAT
Back.’ refers to SAT model backbone, and ‘Graph Back.” denotes graph model backbone.

SAT Back. Graph Back.  Difficulty Model k-Clique k-Domset k-Vercov k-Color k-Indset Matching Automorph ‘ Overall
Graph Model 0.770 0.585 0.603 0.861  0.627 0.712 0.636 0.685

Easy  Graph Model+Contrast  0.793 0.611 0.650 0896  0.677 0.711 0.646 0.712

] Graph Model 0.632 0.622 0599 0796  0.611 0.706 0.633 0.657

Medium  Graph Model+Contrast ~ 0.715 0.654 0.634 0817  0.640 0.723 0.644 0.690

LCG+GCN GCN SAT Model 0.763 0.790 0.890 0868  0.780 0.801 0.616 0.787
Easy  SAT Model+Contrast 0.827 0.932 0953 0937  0.820 0.967 0.689 0.875

] SAT Model 0.724 0.652 0.836 0858  0.721 0.835 0.668 0.756

Medium  SAT Model+Contrast 0.752 0.953 0979 0887  0.748 0.994 0.784 0.871

Graph Model 0.770 0.585 0.603 0.861  0.627 0.712 0.636 0.685

Easy  Graph Model+Contrast  0.780 0.606 0.629  0.888  0.663 0.711 0.642 0.703

] Graph Model 0.632 0.622 0599 0796 0611 0.706 0.633 0.657

Medium  Graph Model+Contrast  0.708 0.642 0.630  0.804  0.621 0.718 0.640 0.680

VCG+GCN GCN SAT Model 0.511 0.840 0919 0828 0491 0.813 0.568 0.710
Easy  SAT Model+Contrast 0.809 0.959 0.993 0947  0.795 0.993 0.744 0.891

] SAT Model 0.669 0.946 0950  0.860  0.677 0.988 0.642 0.819

Medium  SAT Model+Contrast 0.748 0.988 0995  0.898  0.745 0.994 0.734 0.872

Graph Model 0.579 0.500 0.507 0618 0522 0.582 0.538 0.549

Easy  Graph Model+Contrast  0.797 0.632 0708 0933 0753 0.710 0.639 0.739

] Graph Model 0.528 0.565 0560 0552 0.500 0.582 0.548 0.548

Medium  Graph Model+Contrast ~ 0.728 0.641 0.667 0.859  0.701 0.717 0.648 0.709

LCG+NeuroSAT ~ GraphSAGE SAT Model 0.959 0.991 0.998 0974 0954 0.995 0.999 0.981
Easy  SAT Model+Contrast 0.990 0.996 0999 0988  0.991 0.999 0.999 0.995

] SAT Model 0.876 0.987 0.991 0817  0.887 0.997 0.988 0.935

Medium  SAT Model+Contrast 0.925 0.991 0.996 0953 0935 0.999 0.997 0.971

performance but also robust generalization capabilities to more complex and unseen instances and
problems, underscoring the potential of CORAL as a unified pre-training paradigm for CO research.

Our future work will focus on addressing the current limitations. First, we aim to explore unsuper-
vised learning approaches to minimize dependence on labeled data, thereby enhancing applicability
and scalability in data-sparse scenarios. Additionally, we will focus on developing more generalized
unifying approaches to bridge various CO problems, making the learning process more accessible
and applicable across a broader range of problem domains.
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ETHICS STATEMENT

This work adheres to ethical standards in research and does not involve any direct human subjects,
nor does it present any privacy or security concerns. The datasets used in this study are syntheti-
cally generated without involving sensitive or personally identifiable information. All experiments
and methodologies were conducted in compliance with legal regulations and established research
integrity practices. There are no known conflicts of interest, sponsorship influences, or concerns re-
lated to discrimination, bias, or fairness in our approach. Additionally, the research does not produce
any harmful insights or applications, and efforts have been made to ensure that the work promotes
the advancement of combinatorial optimization without negative societal impact.

REPRODUCIBILITY STATEMENT

We have made efforts to ensure the reproducibility of the results presented in this paper. The ar-
chitectural details of our models, including the graph models and SAT models, are described in
Sec. We show more details in Appendix [B] The loss functions are illustrated in Sec.[3.3.3]and
Appendix[C| Furthermore, the datasets used for experiments are detailed in the Appendix[A] with all
relevant settings provided to ensure consistency across experiments. Important training parameters
are shown in Appendix [D] We will release our source code once the paper is accepted.

REFERENCES
JL Ba. Layer normalization. arXiv preprint arXiv:1607.06450, 2016.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial opti-
mization: a methodological tour d’horizon. European Journal of Operational Research, 290(2):
405-421, 2021.

Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of satisfiability, volume 185. 10S
press, 2009.

Béla Bollobas and Paul Erdds. Cliques in random graphs. In Mathematical Proceedings of the
Cambridge Philosophical Society, volume 80, pp. 419-427. Cambridge University Press, 1976.

Benedikt Biinz and Matthew Lamm. Graph neural networks and boolean satisfiability. arXiv preprint
arXiv:1702.03592, 2017.

Hongyun Cai, Vincent W Zheng, and Kevin Chen-Chuan Chang. A comprehensive survey of graph
embedding: Problems, techniques, and applications. IEEE transactions on knowledge and data
engineering, 30(9):1616-1637, 2018.

Chris Cameron, Rex Chen, Jason Hartford, and Kevin Leyton-Brown. Predicting propositional satis-
fiability via end-to-end learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pp. 3324-3331, 2020.

Fenxiao Chen, Yun-Cheng Wang, Bin Wang, and C-C Jay Kuo. Graph representation learning: a
survey. APSIPA Transactions on Signal and Information Processing, 9:e15, 2020a.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,

pp. 1597-1607. PMLR, 2020b.

Yifan Du, Zikang Liu, Junyi Li, and Wayne Xin Zhao. A survey of vision-language pre-trained
models. arXiv preprint arXiv:2202.10936, 2022.

Haonan Duan, Pashootan Vaezipoor, Max B Paulus, Yangjun Ruan, and Chris Maddison. Aug-
ment with care: Contrastive learning for combinatorial problems. In International Conference on
Machine Learning, pp. 5627-5642. PMLR, 2022.

Paul Erdos, Alfréd Rényi, et al. On the evolution of random graphs. Publ. math. inst. hung. acad.
sci, 5(1):17-60, 1960.

11



Under review as a conference paper at ICLR 2025

ABKFM Fleury and Maximilian Heisinger. Cadical, kissat, paracooba, plingeling and treengeling
entering the sat competition 2020. SAT COMPETITION, 2020:50, 2020.

Maxime Gasse, Simon Bowly, Quentin Cappart, Jonas Charfreitag, Laurent Charlin, Didier Chételat,
Antonia Chmiela, Justin Dumouchelle, Ambros Gleixner, Aleksandr M Kazachkov, et al. The
machine learning for combinatorial optimization competition (ml4co): Results and insights. In
NeurIPS 2021 competitions and demonstrations track, pp. 220-231. PMLR, 2022.

Jesus Girdldez-Cru and Jordi Levy. A modularity-based random sat instances generator. 2015.

Jests Girdldez-Cru and Jordi Levy. Locality in random sat instances. International Joint Conferences
on Artificial Intelligence, 2017.

Wenxuan Guo, Hui-Ling Zhen, Xijun Li, Wangian Luo, Mingxuan Yuan, Yaohui Jin, and Junchi
Yan. Machine learning methods in solving the boolean satisfiability problem. Machine Intelli-
gence Research, 20(5):640-655, 2023.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017a.

William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods
and applications. arXiv preprint arXiv:1709.05584, 2017b.

Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning on
graphs. In International conference on machine learning, pp. 4116-4126. PMLR, 2020.

Sean B Holden et al. Machine learning for automated theorem proving: Learning to solve sat and
gsat. Foundations and Trends® in Machine Learning, 14(6):807-989, 2021.

Taoan Huang, Aaron M Ferber, Yuandong Tian, Bistra Dilkina, and Benoit Steiner. Searching large
neighborhoods for integer linear programs with contrastive learning. In International Conference
on Machine Learning, pp. 13869-13890. PMLR, 2023.

Shyh-In Hwang and Sheng-Tzong Cheng. Combinatorial optimization in real-time scheduling: the-
ory and algorithms. Journal of combinatorial optimization, 5:345-375, 2001.

Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network
technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227, 2019.

Richard M Karp. Reducibility among combinatorial problems. Springer, 2010.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial opti-
mization algorithms over graphs. Advances in neural information processing systems, 30, 2017.

Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fahad Shahbaz Khan, and
Mubarak Shah. Transformers in vision: A survey. ACM computing surveys (CSUR), 54(10s):
141, 2022.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Massimo Lauria, Jan Elffers, Jakob Nordstrom, and Marc Vinyals. Cnfgen: A generator of crafted
benchmarks. In Theory and Applications of Satisfiability Testing—SAT 2017: 20th International
Conference, Melbourne, VIC, Australia, August 28—September 1, 2017, Proceedings 20, pp. 464—
473. Springer, 2017.

Zhaoyu Li and Xujie Si. Nsnet: A general neural probabilistic framework for satisfiability problems.
Advances in Neural Information Processing Systems, 35:25573-25585, 2022.

Zhaoyu Li, Jinpei Guo, and Xujie Si. G4satbench: Benchmarking and advancing sat solving with
graph neural networks. arXiv preprint arXiv:2309.16941, 2023.

Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. Reinforcement learning
for combinatorial optimization: A survey. Computers & Operations Research, 134:105400, 2021.

12



Under review as a conference paper at ICLR 2025

Bonan Min, Hayley Ross, Elior Sulem, Amir Pouran Ben Veyseh, Thien Huu Nguyen, Oscar Sainz,
Eneko Agirre, Ilana Heintz, and Dan Roth. Recent advances in natural language processing via
large pre-trained language models: A survey. ACM Computing Surveys, 56(2):1-40, 2023.

Emils Ozolins, Karlis Freivalds, Andis Draguns, Eliza Gaile, Ronalds Zakovskis, and Sergejs Ko-
zlovics. Goal-aware neural sat solver. In 2022 International Joint Conference on Neural Networks
(IJCNN), pp. 1-8. IEEE, 2022.

Aleksandar Peke¢ and Michael H Rothkopf. Combinatorial auction design. Management science,
49(11):1485-1503, 2003.

Marcelo Prates, Pedro HC Avelar, Henrique Lemos, Luis C Lamb, and Moshe Y Vardi. Learning
to solve np-complete problems: A graph neural network for decision tsp. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33, pp. 47314738, 2019.

Ladislav Rampések, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501-14515, 2022.

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Approximation ratios of graph neural networks
for combinatorial problems. Advances in Neural Information Processing Systems, 32, 2019.

Abdelkader Sbihi and Richard W Eglese. Combinatorial optimization and green logistics. Annals
of Operations Research, 175:159-175, 2010.

Daniel Selsam, Matthew Lamm, Benedikt Biinz, Percy Liang, Leonardo de Moura, and David L.
Dill. Learning a SAT solver from single-bit supervision. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=HJMC_1iA5tm.

Zhengyuan Shi, Min Li, Yi Liu, Sadaf Khan, Junhua Huang, Hui-Ling Zhen, Mingxuan Yuan, and
Qiang Xu. Satformer: Transformer-based unsat core learning. In 2023 IEEE/ACM International
Conference on Computer Aided Design (ICCAD), pp. 1-4. IEEE, 2023.

Zekun Tong, Yuxuan Liang, Henghui Ding, Yongxing Dai, Xinke Li, and Changhu Wang. Directed
graph contrastive learning. Advances in neural information processing systems, 34:19580-19593,
2021.

Petar Velickovié¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Petar Velickovié, Lars Buesing, Matthew Overlan, Razvan Pascanu, Oriol Vinyals, and Charles
Blundell. Pointer graph networks. Advances in Neural Information Processing Systems, 33:
2232-2244, 2020.

Natalia Vesselinova, Rebecca Steinert, Daniel F Perez-Ramirez, and Magnus Boman. Learning
combinatorial optimization on graphs: A survey with applications to networking. IEEE Access,
8:120388-120416, 2020.

Sheng Wan, Yibing Zhan, Liu Liu, Baosheng Yu, Shirui Pan, and Chen Gong. Contrastive graph
poisson networks: Semi-supervised learning with extremely limited labels. Advances in Neural
Information Processing Systems, 34:6316-6327, 2021.

Nathan Wetzler, Marijn JH Heule, and Warren A Hunt Jr. Drat-trim: Efficient checking and trim-
ming using expressive clausal proofs. In International Conference on Theory and Applications of
Satisfiability Testing, pp. 422—429. Springer, 2014.

Ben Wieland and Anant P Godbole. On the domination number of a random graph. the electronic
Jjournal of combinatorics, pp. R37-R37, 2001.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. Advances in neural information processing systems, 33:
5812-5823, 2020.

Wenjie Zhang, Zeyu Sun, Qihao Zhu, Ge Li, Shaowei Cai, Yingfei Xiong, and Lu Zhang. Nlocalsat:
Boosting local search with solution prediction. arXiv preprint arXiv:2001.09398, 2020.

13


https://openreview.net/forum?id=HJMC_iA5tm

Under review as a conference paper at ICLR 2025

APPENDIX

A MORE DETAILS ON DATASETS

In this section, we supplement more details on the utilized datasets in our main paper, including the
parameters of GDP instances and the statistics of SAT instances.

Al

GDP INSTANCES

To ensure the generation of high-quality GDP instances that accurately capture the inherent charac-
teristics of each problem, we carefully select the graph distributions and parameters used for instance

generation. Some parameters refer to

specific GDP datasets employed in the main paper.

Table 6: Details of generated GDP datasets.

. Table [6] provides a detailed overview of the

Dataset Description Parameters Notes
The k-Clique dataset consists of graph instances of the k-Clique
problem, which involves determining whether a given graph con- The parameter p is selected
tains a clique of size k. A clique is a subset of vertices in which  General: p = (k)*l/(é), based on
k-Clique every pair of vertices is connected by an edge. The goal is to  Easy dataset: v ~ Uniform(5, 15), k ~ Uniform(3, 4), , ensuring that the ex-
identify whether such a fully connected subset of & vertices ex-  Medijum d: : v ~ Uniform(15, 20), k ~ Uniform(3, 5), pected number of k-cliques
ists within the graph. Instances are built on randomly generated  Hard dataset: v ~ Uniform(20, 25), k ~ Uniform(4, 6). in the generated graph is
Erd6s-Rényi graphs. Parameters include number of vertices v, equal to 1.
edge probabilities p, and clique size k.
The k-Domset dataset consists of graph instances of the k-
Dominating Set problem, which involves determining whether
a given graph contains a dominating set of size k. A dominating The parameter p is selected
set is a subset of vertices such that every vertex in the graph is . oy —1/(w—k)\ 1k b 3
either in the subset or adjacent to at least one vertex in the subset. General: p =1 — (1 - (k) 4 1e an‘ . (})1
k-Domset  The goal is to identify whether such a subset of k vertices exists ~ Easy dataset: v ~ Uniform(3, 15), k' ~ Uniform(2, 3), A e““;)""é- f‘ Z‘
that can ‘dominate’ the entire graph, ensuring that all other ver- Medium dataset: v ~ Uniform(15, 20), k& ~ Uniform(3, 5), dominatin %1[1:;1;11" f:,eo e":
tices are either in the subset or connected to it. Instances are built ~ Hard dataset: v ~ Uniform(20, 25), k& ~ Uniform(4, 6). ted ors gh" ) 1t %
on randomly generated ErdGs-Rényi graphs. Parameters include crated graph 1s equat to 1.
number of vertices v, edge probabilities p, and dominating set
size k.
The k-Vercov dataset consists of graph instances of the k-Vertex
Cover problem, which involves determining whether a given The parameter p is selected
graph contains a vertex cover of size k. A vertex cover is a subset ; based on the reiaiionshi
of vertices §uch that every edge in (.he gfuph 1s incident to atleast ~ General: p = Bh V(z)ﬁ between k-Clique and kg
k-Vercov one vertex in the subset. The goal is to identify whether a subset  Easy dataset: v ~ Uniform(3, 15), k ~ Uniform(3, 5), Vercov, ensuring that the ex-
of k vertices exists that can ‘cover’ all the edges in the graph, Medium dat: v ~ Uniform(10, 20), k ~ Uniform(6, 8), pected ’Sile of the minimum
ensuring that each edge is connected to at least one vertex in the  Hard dataset: v ~ Uniform(15, 25), k ~ Uniform(9, 10). Vertex cover in the generated
subset. Instances are built on randomly generated ErdGs-Rényi aph is k.
graphs. Parameters include number of vertices v, edge probabil- grapais k.
ities p, and vertex set size k.
The k-Color dataset consists of graph instances of the k-
Coloring problem, which involves determining whether a given
graph can be colored with k colors such that no two adjacent The parameter p is selected
vertices share the same color. A valid coloring assigns one of k& General ") 1/(‘3')v based on the relationship be-
k-Color different colors to each vertex, ensuring that vertices connected  Easy dataset: v ~ Uniform(5, 15), k ~ Uniform(3, 4), tween k-Clique and k-Color,
by an edge have different colors. The goal is to identify whether  Medium dataset: v ~ Uniform(15, 20), k ~ Uniform(3, 5), ensuring that the expected
such a coloring scheme exists for the graph using at most k¥ Hard dataset: v ~ Uniform(20, 25), k ~ Uniform(4, 6). minimum number of colors
colors. Instances are built on randomly generated Erdds-Rényi for the generated graph is k.
graphs. Parameters include number of vertices v, edge probabil-
ities p, and number of colors k.
The k-Indset dataset consists of graph instances of the k-
Independent Set problem, which involves determining whether The parameter p is se-
a given graph contains an independent set of size k. An indepen- . lected based on thel rela-
dent set is a subset of vertices in which no two vertices are adja-  General: p = 1 — (2)71/(2), tionship Bctwccn k-Clique
J-Indeset cent, meaning there are no e(!ges connecting any pair of vertices  Easy dataset: v ~ Uniform(5, 15), k ~ Uniform(3, 4), and k-Indset, ensuring that
in the subset. The goal is to identify whether such a subset of & Medium dataset: v ~ Uniform(15, 20), k ~ Uniform(3, 5), the expected number of k-
vertices exists within the graph, ensuring that the selected ver-  Hard dataset: v ~ Uniform(20, 25), k ~ Uniform(4, 6). independent sets in the gen-
tices are mutually non-adjacent. Instances are built on randomly erated sraph is equal to T
generated Erd6s-Rényi graphs. Parameters include number of graphis eqt .
vertices v, edge probabilities p, and independent set size k.
The Matching dataset con: of graph instances of the Perfect
Matching problem, which involves determining whether a given
graph contains a perfect matching. A perfect matching is a sub- The selected parameter p is
set of edges in which every vertex in the graph is incident to ex- General: p = In(v) /v
actly one edge in the subset. In other words, the graph’s vertices Easy d: L p v~ Un/'yform(() 16), should be an even number.
Matching can be paired off so that no vertex is left unpaired and no two MasyA ataset: v . OrMD, 76), S1ow ven nur N
N . e edium dataset: v ~ Uniform(16, 24), should be an even number,
edges share a vertex. The goal is to identify whether such a per- Hard dataset: v ~ Uniform(24, 30), should be an even number. 1t
fect matching exists within the graph, ensuring that all vertices o T . neither too dense nor too
are perfectly matched. Instances are built on randomly gener- sparse.
ated Erd6s-Rényi graphs. Parameters include number of vertices
v and edge probabilities p.
The Automorph dataset consists of graph instances of the Graph
Automorphism problem, which involves determining whether a The selected parameter p is
given graph has a non-trivial automorphism. An automorphism a shz;r threshold for era h
is a mapping of the graph’s vertices to itself such that the struc-  General: p = In(v) /v, conneflivily based ong 13
Automorph ture of the graph is preserved, meaning that the adjacency re- Easy dataset: v ~ Uniform(4, 8), 5

lationships between vertices remain unchanged. The goal is to
identify whether there exists a way to rearrange the vertices of
the graph such that it appears identical to its original form. In-
stances are built on randomly generated Erd6s-Rényi graphs. Pa-
rameters include number of vertices v and edge probabilities p.

Medium dataset: v ~ Uniform(8, 10),
Hard dataset: v ~ Uniform(10, 12).

S g
that the generated graph is
neither too dense nor too
sparse.

Note that six of the seven GDPs are NP-hard, while the Perfect Matching problem is a P problem.
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A.2 SAT INSTANCES

After generating the seven GDP datasets, the corresponding seven SAT datasets are generated by
transforming the GDP datasets, utilizing the python toolkit CNFGen (Lauria et al., 2017). We also
compute the statistics of those SAT datasets to provide comprehensive information on datasets. The
dataset statistics are shown in Table[7]

Table 7: SAT dataset statistics. # Variables refers to average number of variables, # Clauses denoted
average number of clauses, Mod. (LCG) represents average modularity of LCG graphs, and Mod.
(VCQG) represents average modularity of VCG graphs.

Easy Medium Hard
Dataset # Variables  # Clauses Mod. (LCG) Mod. (VCG) # Variables  # Clauses Mod. (LCG) Mod. (VCG) # Variables  # Clauses Mod. (LCG) Mod. (VCG)
k-Clique 35.69 613.25 0.49 0.46 70.86 2298.03 0.49 0.48 114.49 5670.10 0.50 0.49
k-Domset 40.73 345.75 0.53 0.47 89.70 1708.06 0.51 0.49 137.32 4025.85 0.51 0.49
k-Vercov 46.33 498.06 0.52 0.48 108.19 2681.55 0.51 0.49 192.57 8409.32 0.51 0.50
k-Color 3391 112.64 0.69 0.65 69.92 321.25 0.71 0.68 112.16 719.32 0.69 0.66
k-Indset 38.38 702.92 0.49 0.46 72.55 2388.22 0.49 0.48 113.12 5549.79 0.50 0.49
Matching 27.48 95.03 0.69 0.59 30.92 107.67 0.70 0.61 45.48 169.49 0.72 0.64
Automorph 56.76 943.54 0.51 0.47 82.74 1856.26 0.51 0.48 121.56 3612.56 0.51 0.49

Moreover, to evaluate the effectiveness of the learned representations on unseen SAT instances, we
synthetically generate four more SAT datasets, including two random problems and two pseudo-
industrial problems. Specifically, for random problems, we generate the SR dataset with the SR
generator in NeuroSAT (Selsam et al., [2019), and the 3-SAT dataset with the 3-SAT generator in
CNFGen (Lauria et al.,[2017). For pseudo-industrial problems, we generate the CA dataset via the
Community Attachment model (Giraldez-Cru & Levyl 2015)), and the PS dataset by the Popularity-
Similarity model (Giraldez-Cru & Levyl 2017)). The generation process of the four datasets follows
Li et al.[(2023)), where the dataset descriptions and statistics can also be found.

The ground truth of satisfiability and satisfying assignments are calculated by calling the state-of-
the-art modern SAT solver CaDiCaL (Fleury & Heisinger, 2020), and the truth labels for unsat core
variables are generated by invoking the proof checker DRAT-trim (Wetzler et al.l 2014)).

B MORE DETAILS ON MODEL ARCHITECTURE

B.1 INITIAL VERTEX FEATURES

As illustrated in the main paper, the input graphs primarily provide edge information instead of
vertex features. Therefore, we should devise initial vertex features for the models. In this section,
we introduce the definition of initial vertex features for the graph and SAT models.

Graph Model Vertex Feature. We begin by generating a normalized, learnable d-dimensional
vector, which serves as the initial embedding shared across all vertices. For GDP datasets that do
not require additional problem-specific information, such as Matching and Automorph, this initial
embedding is directly used as the vertex feature for all vertices. In contrast, for GDP datasets where
the parameter k plays a critical role in defining the instance characteristics, such as k-Clique and
k-Vercov, we first embed k into a d-dimensional vector. The initial vertex embedding is then fused
with the k£ embedding through an MLP to generate the final initial vertex features.

SAT Model Vertex Feature. For the SAT model, we generate initial vertex features based on the
type of SAT graph representation, whether it is a Literal-Clause Graph (LCG) or a Variable-Clause
Graph (VCGQG). In the case of the LCG graph, we initialize a normalized, learnable d-dimensional
vector for all literal nodes and a separate normalized, learnable d-dimensional vector for all clause
nodes. Similarly, for the VCG graph, we generate a normalized, learnable d-dimensional vector for
all variable nodes and another for all clause nodes.

B.2 MORE BACKBONES

To demonstrate that the performance improvement brought about by our CORAL is consistent, and
independent with specialized model architectures, we conduct experiments on more backbones.
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Graph Model Backbone. For the graph model, we employ an additional mainstream network
architecture for node embedding, GraphSAGE (Hamilton et al., 2017a), which is widely recognized
for its ability to generate inductive representations of graph nodes by aggregating information from
anode’s local neighborhood. The update rule for the i-th layer of GraphSAGE is defined as follows:

n{) = AGG (ReLU (Q@)hﬁ) +q? ve N(u))) , 7)
h(+1) = ReLU (W@ CONCAT (hgp, n§j>)) , )

where h,, denotes the embedding for vertex u, N (u) refers to the neighbors of vertex u, Q, q, W are
trainable parameters, and AGG is the aggregation function. In our implementation, AGG is defined
as the mean function, which computes the element-wise average of the neighbor embeddings.

SAT Model Backbone. For the SAT model, we incorporate a GCN architecture specifically tai-
lored for SAT graphs as an additional backbone. The node updates at the ¢-th layer are defined as
follows:

(3 _ i—1 (i—1) 4,(i—1)
hy” =MLP (Selx%) (MLP (b)) By by > ’ ®
h® = MLP M (MLP (hi~1)) , h{-b 1

c (lglj\j[(c) ( ( 1 )) » e ) ’ ( O)

where [ and c represent an arbitrary literal node and clause node, respectively. The aggregation of
neighboring node information is performed using the summation operator (SUM), which serves as
the aggregation function. The updates for both literal and clause nodes are computed using an MLP.

Furthermore, we extend the backbone to VCG graph modeling, where all literal nodes are replaced
by variable nodes, and each literal and its negation are merged into a single variable node. The node
updates at the ¢-th layer of the VGC-based GCN are formulated as:

Y ((12[./\{'(1)) ( ( ¢ )) B ’ (in
h() = MLP [ SUM (MLP (hi~')), h{ 1)) 12
¢ (UEN(C) ( ( N )) e ’ (12)

where v and c represent an arbitrary variable node and clause node, respectively.

B.3 CASE STUDY ON MODEL OUTUT

In this section, we illustrate the model outputs for specific GDP and corresponding SAT problems
for better understanding.

In the context of GDP, the model’s output is typically binary, represented as O or 1, at the instance
level. For instance, in the case of the k-Clique problem, the input consists of a graph, and the output
indicates whether the graph contains a clique of size k. Specifically, if a k-Clique is present, the
output is 1; otherwise, it is 0.

Similarly, for the corresponding SAT problem, the output denotes the satisfiability of the formula. If
the formula is satisfiable, the output is 1; if not, it is 0. The satisfiability result is directly linked to
the solution of the original GDP problem. For example, a satisfiable formula indicates the existence
of a k-Clique in the original graph.

However, the framework is not restricted to this specific task alone. By making appropriate modi-
fications to the architecture of the output module, the models can be adapted to solve other related
tasks, including both SAT-based and GDP-based tasks.

C Loss FUNCTION FOR SAT-BASED TASKS

For the unsat core variable prediction task, we manually generate labels for the datasets, and adopt
a binary cross-entropy loss on the label and the prediction.
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For the satisfying assignment prediction task, we employ an unsupervised loss function as defined
in|Ozolins et al.|(2022):

Ve(z) =1— H (1—x;) H x;, Ly(x)=—log HVC(JU) = —Zlog (Ve(x))  (13)

icct ic€c— cEP cEP

where ¢ refers to the CNF formula, x is the predicted assignment consisting of binary values (0 or
1) for variables, ¢ denotes an arbitrary clause. The sets ¢ and ¢~ comprise the variables present
in clause c in positive and negative forms, respectively. It is important to note that the loss function
achieves its minimum value only when the predicted assignment x corresponds to a satisfying as-
signment. Minimizing this loss can effectively aid in constructing a possible satisfying assignment.

D MORE EXPERIMENTAL RESULTS

D.1 TRAINING PARAMETERS

For reproducibility, we present some important parameters used for training in Table[8] More details
can be found in our source code, which will be released once the paper is accepted.

Table 8: Parameters used for training.

Parameter Value Description
Ir le-04 Learning rate.
Ir_step_size 50 Learning rate step size.
Ir_factor 0.5 Learning rate factor.
Ir_patience 10 Learning rate patience.
clip_-norm 1.0 Clipping norm.
weight_decay le-08 L2 regularzation weight.
sat_model_gnn_layer 32 Number of GNN layers in SAT model.
graph_model_gnn_layer 12 Number of GNN layers in graph model.
mlp_layer Number of Linear layers in an MLP.

2
T 0.1 (easy) / 0.5 (medium)  Temperature scalar in the contrastive loss.
Ié] 0.5~1.0 Weight of the decision loss during training.

D.2 COMPUTATIONAL COST

All training and inference tasks were conducted on a single NVIDIA H100 GPU with 80GB of
memory.

The pre-training process for the SAT model and the graph models with CORAL totally takes ap-
proximately 40 hours, with convergence typically occurring around the 20th epoch. Each epoch
requires roughly 2 hours. Following the pre-training phase, fine-tuning takes an additional 5 to 6
hours for each model to achieve optimal performance. In comparison, training the baseline SAT
model takes about 45 hours, with convergence reached by the 30th epoch, and each epoch requir-
ing approximately 1.5 hours. Notably, pre-training with CORAL demonstrates a faster convergence
rate, leading to a shorter training time. Moreover, training the baseline graph model independently
each requires around 15 hours, with convergence occurring around the 60th epoch, and each epoch
taking between 12 to 18 minutes.

Overall, the computational cost of training with CORAL is comparable to that of the conventional
training approach, with no significant increase in computational burden.

D.3 MORE GENERALIZATION RESULTS

We show more results on generalization on the hard datasets in Table 0] Our approach to perfor-
mance improvement is consistent across different model backbones. The SAT model with the GCN
backbone exhibits minimal generalization capability across different problem difficulty levels. How-
ever, with other backbones, our approach consistently shows improved generalization performance
compared to the baseline.
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Table 9: Generalization performance across various model backbones on the hard datasets. The table
presents the GDP-solving accuracy for the graph models and the satisfiability prediction accuracy
for the SAT models. ‘SAT Back.” refers to SAT model backbone, and ‘Graph Back.” denotes graph
model backbone. The terms ‘Easy’ and ‘Medium’ in parentheses indicate the difficulty level of the
datasets used for training. The ‘Overall’ column represents the average accuracy across all datasets.

SAT Backbone  Graph Backbone Model k-Clique k-Domset k-Vercov k-Color k-Indset Matching Automorph ‘ Overall

Graph Model (Easy) 0.545 0.500 0500 0546  0.505 0.664 0.631 0.556

Graph Model+Contrast (Easy) 0.525 0.500 0539 0557 0499 0.686 0.631 0.562

Graph Model (Medium) 0.571 0.562 0500  0.637  0.531 0.683 0.632 0.588

Graph Model+Contrast (Medium) ~ 0.579 0.589 0.574  0.656  0.552 0.712 0.645 0.615

LCG+GCN GCN SAT Model (Easy) 0.500 0.500 0500 0459  0.500 0.539 0.500 0.500
SAT Model+Contrast (Easy) 0.500 0.592 0500 0500  0.500 0.591 0.513 0.528

SAT Model (Medium) 0.500 0.500 0500 0494  0.500 0.470 0.500 0.495

SAT Model+Contrast (Medium) 0.500 0.500 0500 0526  0.500 0.499 0.500 0.504

Graph Model (Easy) 0.545 0.500 0500 0546  0.505 0.664 0.631 0.556

Graph Model+Contrast (Easy) 0.531 0.500 0.500 0.554 0.496 0.684 0.634 0.557

Graph Model (Medium) 0.571 0.562 0500 0637  0.531 0.683 0.632 0.588

Graph Model+Contrast (Medium) 0,577 0.605 0.577  0.648  0.536 0.690 0.643 0.611

VCG+GCN GCN SAT Model (Easy) 0.500 0.500 0500 0500  0.500 0.500 0.500 0.500
SAT Model+Contrast (Easy) 0.500 0.500 0500 0500  0.500 0.500 0.500 0.500

SAT Model (Medium) 0.500 0.500 0500 0500  0.500 0.500 0.500 0.500

SAT Model+Contrast (Medium) 0.500 0.500 0500 0503  0.500 0.500 0.500 0.500

Graph Model (Easy) 0.509 0.503 0.481 0.508  0.505 0.578 0.557 0.520

Graph Model+Contrast (Easy) 0.529 0.599 0559  0.602  0.585 0.679 0.621 0.596

Graph Model (Medium) 0.509 0.573 0547 0502 0489 0.584 0.558 0.537

Graph Model+Contrast (Medium) 0,597 0.595 0.603 0702 0.564 0.684 0.642 0.627

LCG+NeuroSAT  GraphSAGE AT Model (Easy) 0.475 0.505 0.500 0588 0473 0.995 0.729 0.609
SAT Model+Contrast (Easy) 0.596 0.505 0500  0.615  0.587 0.996 0.821 0.660

SAT Model (Medium) 0.692 0.964 0852 0679  0.694 0.996 0.990 0.838

SAT Model+Contrast (Medium) 0.793 0.973 0.891 0731 0793 0.996 0.996 0.882

D.4 MORE SAT-BASED TASK RESULTS.

We show more results on the satisfying assignment prediction task and the unsat core variable pre-
diction task in Fig.[f] Our approach outperforms the baseline models with faster convergence and
higher final accuracy.

D.5 FURTHER STUDY ON GNN BACKBONE

To further assess the efficacy of CORAL, we implement two more advanced GNN backbones,
PGN (Velickovi¢ et al.l [2020) and GraphGPS (Rampasek et al., [2022)), for our graph models. All
related experiments presented in the main paper are conducted. The results are summarized in Ta-
ble[TI0]and Table[TT] PGN achieves performance comparable to GraphSAGE, while GraphGPS sig-
nificantly outperforms the other backbones. Notably, CORAL consistently improves performance
on accuracy and generalization ability across both backbones, thereby demonstrating its effective-
ness regardless of the underlying GNN architecture.

Table 10: Experimental results across various model backbones. The table presents the GDP-solving
accuracy for the graph models and the satisfiability prediction accuracy for the SAT models. ‘SAT
Back.’ refers to SAT model backbone, and ‘Graph Back.” denotes graph model backbone.

SAT Back. Graph Back.  Difficulty Model k-Clique k-Domset k-Vercov k-Color k-Indset Matching Automorph ‘ Overall
Graph Model 0.762 0.584 0.664 0916  0.679 0.687 0.617 0.701
Easy  Graph Model+Contrast ~ 0.773 0.619 0.697 0937  0.716 0.703 0.617 0.723
] Graph Model 0.724 0.628 0.647 0.830  0.681 0.588 0.504 0.657
Medium  Graph Model+Contrast  0.720 0.633 0.660 0.864  0.672 0.708 0.633 0.699
LCG+NeuroSAT PGN SAT Model 0.959 0.991 0998 0974 0954 0.995 0.999 0.981
Easy  SAT Model+Contrast 0.989 0.996 0.998 0.988  0.991 0.999 0.999 0.994
] SAT Model 0.876 0.987 0.991 0.817  0.887 0.997 0.988 0.935
Medium  SAT Model+Contrast 0.905 0.990 0.995 0941 0914 0.999 0.997 0.963
Graph Model 0.824 0.772 0.855 0.899  0.764 0.694 0.674 0.783
Easy  Graph Model+Contrast  0.839 0.774 0.885 0906  0.784 0.763 0.664 0.802
] Graph Model 0.707 0.625 0.658 0.849 0618 0.694 0.626 0.682
Medium  Graph Model+Contrast ~ 0.717 0.729 0.818 0.856  0.730 0.572 0.632 0.722
LCG+NeuroSAT  GraphGPS SAT Model 0.959 0.991 0.998 0974 0954 0.995 0.999 0.981
Easy  SAT Model+Contrast 0.986 0.996 0.999 0985  0.987 0.998 0.999 0.993
] SAT Model 0.876 0.987 0.991 0.817  0.887 0.997 0.988 0.935
Medium  SAT Model+Contrast 0.914 0.990 0.996 0939 0922 0.997 0.996 0.965
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Table 11: Generalization performance across various model backbones on the hard datasets. The
table presents the GDP-solving accuracy for the graph models and the satisfiability prediction accu-
racy for the SAT models. ‘SAT Back.” refers to SAT model backbone, and ‘Graph Back.” denotes
graph model backbone. The terms ‘Easy’ and ‘Medium’ in parentheses indicate the difficulty level
of the datasets used for training. The ‘Overall’ column represents the average accuracy across all
datasets.

SAT Backbone  Graph Backbone ~Model k-Clique k-Domset k-Vercov k-Color k-Indset Matching ~ Automorph | Overall
Graph Model (Easy) 0.542 0.593 0.595 0.631 0.549 0.663 0.603 0.597

Graph Model+Contrast (Easy) 0.546 0.598 0.599 0.633 0.551 0.667 0.610 0.601

Graph Model (Medium) 0.604 0.586 0.597 0.691 0.559 0.671 0.635 0.620

Graph Model+Contrast (Medium) 0.612 0.589 0.607 0.697 0.581 0.675 0.633 0.628

LCG+NeuroSAT PGN SAT Model (Easy) 0.475 0.505 0.500 0588 0473 0.995 0.729 0.609
SAT Model+Contrast (Easy) 0.597 0.507 0.500 0.614 0.596 0.979 0.772 0.652

SAT Model (Medium) 0.692 0.964 0.852 0.679 0.694 0.996 0.990 0.838

SAT Model+Contrast (Medium) 0.787 0.974 0.900 0.736 0.796 0.998 0.993 0.883

Graph Model (Easy) 0.596 0.500 0.499 0.500 0.535 0.680 0.576 0.555

Graph Model+Contrast (Easy) 0.593 0.507 0.609 0.596 0.535 0.589 0.595 0.575

Graph Model (Medium) 0.632 0.552 0.568 0.683 0.630 0.639 0.583 0.612

Graph Model+Contrast (Medium) 0.638 0.608 0.779 0.689 0.657 0.601 0.614 0.655

LCG+NeuroSAT GraphGPS SAT Model (Easy) 0.475 0.505 0500 0588 0473 0.995 0.729 0.609
SAT Model+Contrast (Easy) 0.505 0.506 0.504 0.596 0.503 0.993 0.762 0.624

SAT Model (Medium) 0.692 0.964 0.852 0.679 0.694 0.996 0.990 0.838

SAT Model+Contrast (Medium) 0.760 0.969 0.961 0.738 0.760 0.994 0.993 0.882

D.6 FURTHER STUDY ON CONTRASTIVE LOSS

We revise the negative sampling strategy within our contrastive learning framework to mitigate the
issue of false negative samples. Specifically, within each training batch, unsatisfiable instances
are selected as negative samples for satisfiable instances, and conversely, satisfiable instances are
chosen as negative samples for unsatisfiable instances. This adjustment ensures that false negative
samples are avoided. Consequently, we modify the contrastive loss function to reflect this change
and proceed with the training of the models. The results, as shown in Table demonstrate that
the models trained with the revised contrastive loss exhibit performance comparable to that of those
trained with the original loss. We also plot the contrastive loss curves for several GDPs during the
original training process in Fig. |4 all of which exhibit smooth trajectories. These results suggest
that the influence of false negative samples on model performance is minimal.

Table 12: Experimental results on the modified and original contrastive loss function. The table
presents the GDP-solving accuracy for the graph models and the satisfiability prediction accuracy for
the SAT models. ‘Graph/SAT Model+Contrast+Modified Loss’ denotes training with the modified
contrastive loss. ‘SAT Back.” refers to SAT model backbone, and ‘Graph Back.” denotes graph
model backbone.

SAT Back. Graph Back.  Difficulty  Model k-Clique  k-Domset  k-Vercov  k-Color  k-Indset Matching ~ Automorph | Overall
Graph Model+Contrast+Modified Loss ~ 0.771 0.579 0.615 0.887  0.642 0.715 0.644 0.693

Easy  Graph Model+Contrast 0.793 0.620 0.673 0902  0.675 0.717 0.654 0.719

] Graph Model+Contrast+Modified Loss ~ 0.707 0.630 0.612 0798  0.589 0.724 0.637 0.671

Medium  Graph Model+Contrast 0.713 0.646 0.633 0822  0.640 0.728 0.657 0.691

LCG+NeuroSAT GCN SAT Model+Contrast+Modified Loss 0.983 0.996 0999 0985 0981 0.999 0.999 0.992
Easy  SAT Model+Contrast 0.989 0.996 0.999 0988 0.989 0.999 0.999 0.994

X SAT Model+Contrast+Modified Loss 0.907 0.991 0.995 0.923 0.917 0.999 0.999 0.960

Medium AT Model+Contrast 0.923 0.991 0996 0946  0.930 0.999 0.999 0.969

D.7 FURTHER STUDY ON GRAPH MODEL GENERALIZATION

In the main paper, we demonstrate the generalization capabilities of our models across different
difficulty levels, as well as the ability to generalize to unseen domains of the SAT model. In this
section, we conduct a more comprehensive evaluation of the generalization ability of the graph
models through two additional experimental settings.

D.7.1 GENERALIZATION ON RELATED TASK

We select the k-Clique and k-Vertex Cover problems as the original problem domains and design
two related tasks to assess generalization. For the k-Clique problem, we adapt the pre-trained model
to predict the maximum clique size in the input graph. For the k-Vertex Cover problem, the model
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Figure 4: Contrastive loss w.r.t. training iterations across various datasets. CL denotes the con-
trastive loss of the training process.

is tasked with predicting the minimum number of vertices required to cover the edges of the input
graph. The pre-trained model is fine-tuned using a subset of % of the training data. For comparing
the performance of the fine-tuned models with models trained from scratch with full training data,
we employ the mean relative error (MRE):

N .

. 1 Yi — i
Mean Relative E = — —_— 14
ean Relative Error = — ;,1 | m | (14)

where y; refers to the ground truth, §; refers to the predicted value, N refers to the sample size.
Figure [3]illustrates that the pre-trained model achieves faster convergence and superior final perfor-
mance, underscoring its enhanced generalization ability.
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Figure 5: Mean Relative error w.r.t. epoch on related graph tasks, including maximum clique size
prediction and minimum vertex number prediction for edge cover. MRE denotes the mean relative
error evaluated on test set data.

D.7.2 GENERALIZATION ON LARGE-SCALE DATA

To further assess the generalization ability of our graph models, we generate large-scale instances for
each GDP, with instance sizes ranging from 7 to 20 times larger than those used during pre-training.
We then fine-tune the pre-trained models on this large-scale data, using a subset comprising % of the
training data. We compare the performance of the fine-tuned models with those trained from scratch
with full training data, and the results are presented in Table[T3] indicating that models pre-trained on
smaller instances using CORAL can generalize effectively to larger instances through fine-tuning.

D.8 FURTHER STUDY ON MODEL SENSITIVITY

The solution to GDP is known to be sensitive to graph structures. Therefore, we aim to evaluate the
sensitivity of our model to perturbations in graph structure. To do so, we generate modified instances
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Table 13: Experimental results across two graph models under different training methods. ‘Graph
Model (fully-trained)’ refers to the graph model that was trained from scratch with full training
data. ‘Graph Model+Contrast (fine-tuned)’ refers to the fine-tuned graph model after pre-training
by CORAL on small datasets.

Model k-Clique k-Domset k-Vercov k-Color k-Indset Matching Automorph \ Overall
Graph Model (fully-trained) 0.673 0.667 0.654 0.791 0.591 0.724 0.654 0.679
Graph Model+Contrast (fine-tuned)  0.679 0.670 0.666 0.794 0.615 0.726 0.657 0.687

by adding or removing edges from the original graphs until either the satisfiability status reverses or
the number of modified edges reaches %0 of the original edge count. These generated instances are
structurally similar to the original graphs but exhibit a reversed satisfiability status. We then assess
the performance of both the graph models and the SAT model on these perturbed instances. The re-
sults, presented in Table[T4] reveal that the SAT model is sensitive to changes in graph structure, and
it continues to perform well. Additionally, the graph models significantly outperform the baseline
models, as they are more closely aligned with the SAT model and demonstrate enhanced sensitivity

to structural changes.

Table 14: Experimental results on perturbed instances. The table presents the GDP-solving accuracy
for the graph models and the satisfiability prediction accuracy for the SAT models on perturbed
instances. ‘SAT Back.” refers to SAT model backbone, and ‘Graph Back.” denotes graph model
backbone.

SAT Back. Graph Back. Model k-Clique k-Domset ~k-Vercov k-Color k-Indset Matching ~Automorph | Overall
Graph Model 0.652 0.511 0.534 0.614 0.536 0.588 0.377 0.545
Graph Model+Contrast ~ 0.678 0.547 0.618 0.719 0.664 0.656 0.421 0.615
LCG+NeuroSAT — GCN “gAT Model 0976 0923 0982 0933 0971 0854 0923 | 0937
SAT Model+Contrast 0.983 0.940 0.997 0.939 0.984 0.861 0.939 0.949

D.9 ABLATION STUDY ON CROSS-DOMAIN INFORMATION TRANSFER

A central component of our framework is the facilitation of information transfer across different
problem domains. To evaluate the effectiveness of this mechanism, we conduct an ablation study
by disabling the cross-domain information transfer. Specifically, we train each graph model inde-
pendently with its own SAT model, without leveraging cross-domain information. We then compare
this ablated approach with our original method, as shown in Table The results indicate that the
ablated approach yields inferior performance, thereby highlighting the importance and effectiveness
of the cross-domain information transfer in enhancing the model’s performance.

Table 15: Ablation study on cross-domain information transfer. The table presents the GDP-
solving accuracy for the graph models and the satisfiability prediction accuracy for the SAT models.
‘Graph/SAT Model+Single Domain’ refers to the ablated method by disabling cross-domain infor-
mation transfer. ‘SAT Back. refers to SAT model backbone, and ‘Graph Back.” denotes graph
model backbone.

SAT Back. Graph Back.  Difficulty Model k-Clique  k-Domset k-Vercov k-Color k-Indset Matching ~Automorph ‘ Overall
Graph Model+Single Domain ~ 0.784 0.617 0.671 0.899 0.656 0.715 0.653 0.714

Easy Graph Model+Contrast 0.793 0.620 0.673 0.902 0.675 0.717 0.654 0.719

. Graph Model+Single Domain  0.709 0.640 0.629 0.810 0.599 0.725 0.643 0.679

Medium  Graph Model+Contrast 0.713 0.646 0.633 0.822 0.640 0.728 0.657 0.691

LCG+NeuroSAT GCN SAT Model+Single Domain 0.987 0.996 0999 098 0988 0.999 0.999 0.994
Easy SAT Model+Contrast 0.989 0.996 0.999 0.988 0.989 0.999 0.999 0.994

X SAT Model+Single Domain 0.906 0.99 0.994 0.945 0.884 0.999 0.994 0.959

Medium  SAT Model+Contrast 0.923 0.991 0.996 0.946 0.930 0.999 0.999 0.969
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Figure 6: Model performance w.r.t. training iterations on SAT-based tasks across various datasets.

Assign denotes the satisfying assignment prediction task, and Core Var denotes the unsat core vari-
able prediction task.
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